

Background

- The air transportation system
 - large and complex
 - time critical processes
 - different actors with contradicting objectives
- The airport is a bottleneck in the air transportation system
- Collaborative decisions making (CDM) creates a common ground for the actors
- CDM gives a growing amount of information that leads to mounting complexity in the decision making process
- Additional support is needed for decision making

Airport Logistics

- The vision with airport logistics is to develop a **complete picture** of all processes and activities at and around the airport
 - Interaction and impact
- Analyze the usage of all resources at the airport to find solutions optimal for the entire airport, rather than solutions optimized for an individual actor

2009-06-09

The air transportation system

- Value Flows
 - Passengers and baggage
 - Cargo
- Major support flows
 - Aircraft
 - Crew
- Minor support flows
 - Fuel trucks
 - De-icing trucks
 - Cleaning crews
 - Catering
 - Etc.

Integrating optimization and simulation

- A first step to prove the concept
- Simulation model of the turnaround process
- Optimization algorithm for scheduling de-icing trucks

Conceptual simulation model

- TA-resources in service pools
- Simplifications
 - Cleaning and catering can always be performed simultaneously
 - Fuelling can always be performed after boarding
 - Fuelling can not be performed simultaneously as baggage handling
 - Water is not always performed before sanitation in the simulation

De-icing

- At Stockholm Arlanda, between October and April
- Step 1: De-ice with Type 1 fluid
- Step 2: Anti-ice with Type 2 fluid
- Hold-over time: from anti-ice to take-off
 - Gives a tight time window for service
- Planning today
 - Tactical based on weather and flight schedule
 - Operational based on pilot request

Scheduling de-icing trucks

- A schedule is constructed before the day of operations
 - Truck schedule based on a flight schedule
 - Each truck will get a number of departing flights to serve
- Multiobjective
 - Minimize the departure delay that the de-icing trucks are causing
 - Minimize the distance travelled by the de-icing trucks

Min
$$\sum_{i=0}^{N} \sum_{i=0, i \neq i}^{N} \sum_{k=1}^{K} \sum_{r=1}^{R} (a * l_i + b * w_{ij} x_{ij}^{kr})$$

a = 1, b = 0.5

s.t.
$$\sum_{i=1}^{N} x_{ih}^{kr} - \sum_{j=1}^{N} x_{hj}^{kr} = 0$$

$$\sum_{j=0}^{N} \sum_{k=1}^{K} \sum_{r=1}^{R} x_{ij}^{kr} = 1$$

$$\sum_{i=1}^{N} \sum_{i=1}^{N} d_{i} x_{ij}^{kr} \leq q^{k}$$

$$t_i + s + f_i + w_{ij}$$
$$-M(1 - x_{ii}^{kr}) \le t_i$$

$$p_i \ge t_i + s + f_i$$
$$p_i \ge STD_i$$

$$l_i \ge t_i + s + f_i - STD_i$$

$$h \in \{0,..., N\},\$$

 $k \in \{1,..., K\},\$
 $r \in \{1,..., R\}$

$$i \in \{0,...,N\}$$

$$k \in \{1, \dots, K\},$$

$$r \in \{1, \dots, R\}$$

$$i, j \in \{1, ..., N\},$$

$$k \in \{1, ..., K\},\$$

 $r \in \{1, ..., R\}$

$$i \in \{1, ..., N\}$$

$$i \in \{1, ..., N\}$$

$$i \in \{1, ..., N\}$$

$$t_m^{stop} + f_0 - M(1 - z_{mn}^k) \le t_n^{start}$$

$$z_{mn}^{k} \ge x_{i0}^{kn} + x_{0j}^{kn} - 1$$

$$t_r^{stop} \ge p_j + w_{j0} - M(1 - x_{j0}^{kr})$$

$$0 \le t_{-}^{start} \le t_{-} - w_{0} + M(1 - x_{0}^{kr})$$

$$t_i \ge 0$$
, $p_i \ge 0$, $l_i \ge 0$

$$m, n \in \{1, ..., R\},$$

$$k \in \{1, ..., K\}$$

$$m, n \in \{1, ..., R\},\$$

 $n > m, k \in \{1, ..., K\}$
 $i, j \in \{0, ..., N\}$

$$j \in \{1, ..., N\},\$$

 $k \in \{1, ..., K\},\$

$$r \in \{1, \dots, R\}$$

$$i \in \{1,...,N\},\$$

 $k \in \{1,...,K\},\$
 $r \in \{1,...,R\}$

$$i \in \{1, ..., N\}$$

Tobias Andersson Granberg

g 2009-02-23

Sid 10

Computational results

The de-icing scheduling problem is solved using a GRASP heuristic

Solution	Traveling time [minutes]	Delay [minutes]
GWOAC	842	340 270
GRASP 1	1020	295
GRASP 2	1066	207

Integrating de-icing schedules in the turn-around simulation model

Schedule conditions

- Additional delays due to other services, arrival time delay etc.
- Other process times and fluid requirements

Simulation scenarios

- 1. No de-icing
- 2. De-icing based on first-gofirst-served
- 3. De-icing based on GRASP1
- 4. De-icing based on GRASP2

Tobias — Andersson Granberg

2009-02-23

Sid 12

Computational results

	Touch down		Stand		Off block				
	Percentage delay	Max delay	Average delay	Percentage delay	Max delay	Average delay	Percentage delay	Max delay	Average delay
Scenario 1	19%	3 min	44 sec	1%	7 min	4 min	8%	14 min	5 min
Scenario 2	19%	3 min	42 sec	2%	10 min	5 min	27%	32 min	8 min
Scenario 3	19%	3 min	42 sec	1%	7 min	3 min	26%	43 min	7 min
Scenario 4	19%	3 min	42 sec	1%	7 min	3 min	24%	20 min	6 min

	De-icing					
	Percentage waiting	Max waiting time	Average waiting time	Total waiting time		
Scenario 1	-	-	-	-		
Scenario 2	23%	40 min	13 min	1181 min		
Scenario 3	21%	47 min	10 min	808 min		
Scenario 4	18%	33 min	9 min	646 min		

2009-02-23

Sid 13

Future Research

- Optimization and integration of other turnaround services
- Extend and refine the simulation model
 - Final approach, taxiing and take-off
- Make the decision support tools useful for operational planning and control

