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Abstract— Unprecedented global initiatives have begun to 

redesign the aviation systems that provide for the efficient and safe 
transport of civilian aircraft.  Success of these initiatives is only 
possible through global collaborations that allow broader analyses 
and data to be shared.  The paper reports on just such a study that 
examines the lateral deviations from the automation’s known 
horizontal route of flight to the actual aircraft position.  These 
errors are due to the typical navigation and surveillance errors, as 
well as the larger atypical errors that are mainly caused by 
purposeful changes in the route of flight that are not updated.  
Large data analyses within the ground automation systems of the 
United States and Europe indicated errors from 20 to 30 nautical 
miles are common, while airborne Australian and more samples in 
the United States had errors from 100 to 800 times smaller. Further 
analysis illustrated the direct impact these errors have on safety 
critical separation management functions. It was concluded that 
airborne derived data via Automatic Dependent Surveillance 
Contract reports offer a major opportunity to improve the ground-
based automation functions. 
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I.  INTRODUCTION 
Despite the current economic slow down, most air traffic 

service providers (ATSPs) across the globe continue to expect 
significant growth in air traffic demand in the future.  If no 
action is taken, it is generally accepted that this growth will 
outpace the capacity limits of their aviation systems, resulting 
in greater congestion and inefficiency.  In areas of the 
northeastern United States as well as Western Europe, these 
conditions may already have reached their capacity limits under 
peak demand.  In unprecedented proportions, industry and 
ATSPs have responded by developing comprehensive plans 
requiring broad advances in ground-based and airborne 
automation.   

The interagency Joint Development Planning Office 
(JPDO) in the United States foresees a traffic demand increase 
by 2025 up to three times the number of flights of today’s 

traffic [1]. The JDPO, as established in their charter under the 
“Vision-100” legislation (Public Law 108-176) signed by 
President G. W. Bush in December 2003, has mandated a next 
generation operational concept of the National Airspace 
System (NAS) for 2025 [1]. This next generation NAS 
envisions a trajectory based separation management system 
that requires precise management of the aircraft’s current and 
future position. The separation function of today, relying 
heavily on the cognitive skills of the air traffic controller to 
visualize aircraft trajectories on the radar display and issue 
resolutions via voice instructions to pilots, will be replaced by a 
distributed system of separation management components, 
implementing performance-based separation standards. This 
future system will rely heavily on enhanced automation with 
conflict resolutions that are communicated digitally between air 
and ground and between aircraft. 

Beginning in July 2004, the European Commission 
established a consortium of air traffic stakeholders with similar 
objectives for Europe, known as the Single European Sky Air 
Traffic Management (ATM) Research Initiative (SESAR).  
SESAR requires development of technology, standards, and 
procedures over the next eight years.  The overall objective is 
to increase air traffic capacity by three while cutting aviation 
costs in half, improving safety by a factor of ten, and reducing 
the environmental impact of each flight by ten percent [2]. 

While the initiatives in Europe and the United States were 
still just discussions among aviation stakeholders, Australia 
embarked on a world first initiative to develop an ATM 
Strategic Plan as early as 1999.  Like the US and European 
plans that followed, it recognized that future operating 
efficiencies and increased freedom of use of airspace would be 
achieved using systems that require the cooperation of multiple 
aviation stakeholders. The plan set a 15+ year path for the 
future development of ATM in Australia. It highlights 
Australia’s commitment to the implementation of the 
International Civil Aviation Organization (ICAO) concept and 
global plan for ATM. Based on collaborative approach with 
User Preferred Trajectories as the ultimate goal; the ATM 
Strategic Plan establishes a framework that enables Australia to 



keep at the forefront of the Communications, Navigation, and 
Surveillance (CNS) systems and ATM development and its 
associated benefits. 

The successful achievement of these ambitious initiatives 
set forth by multiple nations will require researchers across the 
globe to question their old paradigms within the existing 
processes and infrastructure to develop new approaches for 
meeting the challenges in these plans. With such high goals, 
there will be increasing demands in schedule and cost (doing 
more with less) so collaboration is vital to leverage resources 
and expertise.  This paper brings researchers together from the 
United States, Europe, and Australia to examine one specific, 
yet critical component within the aviation system – the 
understanding of the impact of lateral intent information within 
our current ATM automation and how it may improve in the 
future.  The lateral intent of an aircraft is indeed only one 
aspect of the trajectory input information required to predict an 
aircraft’s future path but the challenges involved is a common 
problem across the globe.  Therefore, global collaboration on 
the issues and potential solutions is warranted.  This paper will 
first describe the trajectory prediction process followed by 
detailed explanations of the problem of missing lateral intent.  
Data and analysis results are presented in the next two sections 
that illustrate the magnitude of the problem.  In closure, 
potential solutions are proposed. 

II. AIRCRAFT TRAJECTORY PREDICTION PROCESS 
Many of the operational concepts among the JPDO, 

SESAR, and Australia’s ATM Strategic Plan promote the 
development of decision support tools (DSTs).  These tools are 
envisioned to help mitigate many of the capacity and workload 
constraints of the system if effectively integrated with 
advanced automation solutions in the air and ground systems.  
These tools have many purposes and typically serve to reduce 
the cognitive workload of the airspace problems faced by the 
current human decision makers operating the system. They 
include tools that serve to predict future conflicts between 
aircraft, both for ground based controllers or airborne pilots, 
allowing more strategic separation management of aircraft. Air 
traffic management DSTs include capabilities that forecast 
where and when traffic workload would stress the system, 
allowing air traffic supervisors to make more efficient 
adjustments to either avoid the condition or alter staff and/or 
airspace accordingly. Such tools also include air traffic 
metering tools to efficiently sequence aircraft into en route and 
arrival flows, maximizing the capacity of the system. A 
common thread in all these DSTs is the accurate and timely 
modeling of the aircraft’s current state and anticipated future 
path. This modeling function is referred to as the trajectory 
predictor (TP) process.  

Figure 1 illustrates an example of the trajectory prediction 
process as applied to a commercial flight already en route.  
This example refers to a generic ground-based trajectory 
prediction and generation process; some TPs may require more, 
different or less information.  The notional trajectory presented 
illustrates a simplistic trajectory prediction.  A more complex 
instantiation of this process could lead to the inclusion of more 
sophisticated steps such as intent inferencing, in-flight 
parameter estimation, or trajectory error monitoring, and 

recalibration.  The TP requires access to the flight plan 
containing the flight number (e.g., AAA123), the aircraft type 
(B-757-200), the filed cruise speed (true airspeed of 450 knots), 
the desired cruise altitude (31,000 feet), and the route of flight 
(from waypoint XXX, direct to ABC, then DEF, finally to 
XYZ via the BUC 7 STAR).  Furthermore, the TP will have an 
estimate of the initial condition (present aircraft position, 
altitude, ground speed and ground track).   Prior to conducting 
trajectory prediction, the flight plan route, expressed as named 
waypoints, jet routes, STARs, etc. will be converted to a series 
of geographical points (e.g., latitude and longitude). This 
process is known as route conversion [3]. 

Once the route is converted, a mechanism for joining the 
initial condition to the converted route is required.  This 
process is referred to as lateral path initialization.  This process 
may simply involve the identification of the initial location on 
the route.  At times, the initial condition will be slightly off-
route and some connection from the initial condition to the 
route will be required.  A more generalized form of this 
trajectory service includes lateral intent modeling, in which 
larger portions of the lateral path may need to be generated 
based on assumed pilot or controller procedure.   

 

Figure 1.  Trajectory Generation – Adapted from [3] 

Once the lateral path is determined, vertical and speed 
constraints must be considered at different points along the 
route of flight.  This is the process of constraint specification.   
For example, speed constraints below 10,000 feet can be 
applied, as can altitude constraints along a standard terminal 
arrival route.  The concept of longitudinal intent modeling, 
while implicit in some TPs, refers to the addition of speed and 
altitude procedural considerations that reflect how the 
combined controller, pilot and aircraft guidance system will 
“fly” the aircraft.  An example is the estimation of the top-of-
descent location or the planned descent speed.   

All of the above steps must be conducted prior to the 
calculation of a trajectory using physics-based modeling. We 
refer to this collection of information as the preparation 
process. The core part of aircraft trajectory prediction follows 
as the next step.  In this part, the lateral and vertical path is 
computed to “reflect” the predicted behavior identified in the 
preparation process, including: following the converted route, 
meeting specified constraints (such as altitude and speed 
constraints), following appropriate aircraft dynamics (such as 
turns, climbs and descents), and reflecting environmental and 
aircraft-specific effects.  The output of this process is the 4-
dimensional trajectory that defines predicted future states of the 
aircraft expressed as a function of time. 
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III. PROBLEM OF MISSING LATERAL INTENT 
The accuracy of the TP process described above can be 

measured by post flight comparisons of predicted and observed 
aircraft trajectories. Since the predicted trajectory is the 
fundamental input that sustains the DST’s capabilities and 
functions, the accuracy of the TP has a direct and significant 
impact on the DST’s overall performance and usability.   

In addition to those previously described, the TP requires 
many inputs to produce an accurate trajectory prediction such 
as aircraft model characteristics, surveillance position reports, 
wind and temperature forecasts, and flight path intent 
information to name a few [4].  These factors have been the 
subject of many scientific studies. In [5], the National Airspace 
Space Administration (NASA) ran aircraft field tests to verify 
the operational performance of its own TP.  In a different study 
[6], researchers at the MITRE Corporation developed models 
to evaluate their DST’s overall performance by utilizing 
accuracy statistics of their TP’s performance.  In yet another 
effort [7], a collaborative group of European and American 
researchers illustrated that the impact of variations in these 
factors has significant effects on the output trajectory’s 
accuracy. 

 Under present-day operations, as illustrated previously in 
Figure 1, the flight plan message is the typical means of coding 
the aircraft operator’s request and air traffic control’s clearance 
of the aircraft’s horizontal path.  However, as the aircraft 
actually executes these maneuvers, unforeseen conditions such 
as the weather or the action of other aircraft, may impact the 
flight and require changes to the operation.  These dynamic 
changes are currently not often processed the same by the 
automation systems on the ground and on-board the aircraft.  
As a result, these systems are often not synchronized with 
respect to aircraft information. 

A common example is the heading vector.  To safely avoid 
other aircraft ahead, the current procedure is initiated verbally 
through direct radio communications between pilot and ground 
controller.  Either to add delay or spatial distance to the 
aircraft’s path, the air traffic controller instructs the aircraft 
pilot to deviate from the previously cleared flight plan to an 
alternate path. A specified heading is given for an 
indeterminate time or to capture a downstream position on the 
original flight plan. This information, although confirmed 
verbally between controller and pilot, is often not digitally 
transcribed for the automation on the ground.  The result is 
aircraft predictions with missing lateral intent in the ground 
automation. 

Heading vectors are not the only example of situations 
where ground automation lacks the horizontal clearances just 
issued to an aircraft.  Flights may be verbally cleared to 
proceed direct to a downstream fix along its flight plan, 
presumably cutting time and distance off its overall route for 
improved efficiency and fuel savings.  In the United States, 
MITRE Corporation published a study in 2000 that reported 
that only about 30% of the lateral maneuvers within an en route 
facility were entered into the ATM automation [8]. 

In other cases, the flight may be deviated to fly one or more 
hold maneuvers or parallel offset from the current route.  This 

next example describes a flight entering a hold maneuver.  An 
operational recording was made in March 2005 of a civilian 
airliner traveling through the United States’ Washington Air 
Route Traffic Control Center (ARTCC), referred to as ZDC.  It 
originated from Dallas Fort Worth, Texas with the destination 
of John F. Kennedy International Airport (JFK) in New York. 
Figure 2 illustrates the top down stereographic view of the 
aircraft’s horizontal path overlaid on the ZDC high-altitude 
sectors, which it travels through. On its journey to JFK, the 
sample flight is traveling in a northeasterly direction where 
ZDC accepts air traffic control for the flight at 20:14 UTC 
(Coordinated Universal Time) from adjacent Indianapolis 
ARTCC.  

 

Figure 2.  Sample Flight Top Down View 

For completeness, Figure 3 illustrates the time versus 
altitude profile of the aircraft. It enters ZDC at Flight Level 390 
(FL 390) and at approximately 20:29 UTC, the aircraft is 
cleared to descend to FL 380. It begins its descent to FL 380 
about two minutes later. It then receives a series of descent 
clearances and is handed-off to New York ARTCC at 20:56 
UTC during a brief cruising segment at FL 240. 

 

Figure 3.  Sample Flight Altitude Plot 

The focus of this example is the ground automation’s 
trajectory built at 74005 seconds (20:33:25 UTC). This 
trajectory is illustrated in both Figure 2 and Figure 3 (blue 
segmented line) and overlaid with the surveillance track 
positions (red thicker line). Of particular interest is the 



complete hold maneuver performed later in the flight beginning 
roughly at 20:50 UTC. Clearly, the trajectory does not reflect 
this event, which is suspected to be a result of a verbal air 
traffic control clearance not entered into the automation 
system. An extraction of the trajectory metrics calculated for 
the 74005 second trajectory is listed in Table I. A sample was 
taken at 74040 seconds (20:34:00) with a look-ahead time 
every five minutes up to 20 minutes in the future. At the first 
measurement time at look-ahead time of zero, the horizontal 
error (i.e. straight-line unsigned error) was nearly half a mile 
with zero vertical error. However, as the look-ahead time 
progresses and approaches the turn as depicted in close-up 
view in Figure 4, the horizontal errors increased significantly. 
Due to the missed maneuver, the error reaches up to 32 nautical 
miles horizontally. The clearly visible cross-track error (i.e. 
side-to-side lateral error) is approximately 12 nautical miles, 
but the bulk of the error is found in the along-track error (i.e. 
longitudinal or along the route error). The additional travel time 
caused by the hold maneuver manifests in a -32 nautical mile 
along-track error, which translates to as much as 4.4 minutes 
lag in the trajectory prediction. 

 

Figure 4.  Close-up View of Actual Versus Trajectory X-Y Plot 

Clearly, if such lateral maneuvers in the form of heading 
vectors, holds, or changes in the horizontal path of an aircraft 
are not known by the ground based TP, they can cause large 
errors in trajectory predictions as shown by this example.  In 
the next section, metrics will be defined and the results of a 
large data analysis effort will further illustrate the magnitude of 
these lateral errors throughout the ATM system today. 

 

 

 

 

 

 

TABLE I.  SAMPLE FLIGHT’S TRAJECTORY METRICS 

Measurement 
Time 

 

Look-
Ahead 
Time 

Horizontal 
Error 

Cross-
track 
Error 

Along-
track 
Error 

Vertical 
Error 

 
HH:MM:SS Seconds 

Nautical 
Miles 

Nautical 
Miles 

Nautical 
Miles Feet 

20:34:00 0 0.4 0.3 -0.3 0 
20:39:00 300 0.1 -0.1 0.0 793 
20:44:00 600 1.2 -0.5 -1.0 0 
20:49:00 900 2.1 -0.1 2.1 2096 
20:54:00 1200 34.6 11.9 -32.5 6952 

IV. LATERAL DEVIATION METRICS 
As described in the previous section, missing lateral intent 

data is often the result of various maneuvers being initiated 
without proper updates to the TP (typically located in the 
ground automation system utilized by DSTs).  This error can be 
detected in post processing or even operationally by measuring 
the difference between the automation’s known horizontal 
position and the coincident surveillance position.  In a study 
conducted in [9] and in another in [10], the overall adherence to 
the current air traffic control clearance is defined as the status 
of whether the aircraft is following its known clearance at each 
instance of time during its flight.  As with any definition, this 
definition is subject to interpretation, but focusing only on the 
lateral dimension discussed in [10], it is interpreted to mean 
that the surveillance radar position (or global positioning 
satellite position if available) for an aircraft should be declared 
out of lateral adherence when it is determined that the aircraft’s 
intent was to deviate laterally from its known cleared route. 

Figure 5 shows the geometry associated with determining 
lateral adherence of a surveillance data point for an aircraft. 
The figure shows an aircraft at a specific position and flying 
along a path in a specific direction. The figure also shows the 
current route segment for the aircraft with a triangle depicting 
the next fix on this route. Identified in this figure are five 
metrics that can be used to define whether or not an aircraft is 
in lateral adherence at a specific position. The five metrics are: 

1. α - The angle between a line drawn from the aircraft's 
actual position point to the next fix and a line 
coincident with the aircraft's current route segment. 

2. β - The angle between the aircraft's direction of flight 
and a line drawn from the aircraft's actual position 
point to the next fix. (This will be referred to as bearing 
to the next fix in this paper although an aircraft’s 
direction of flight may not be equal to its heading.) 

3. da - The distance along the route to the next fix 
measured from a point normally projected from the 
aircraft's actual position point onto the aircraft's current 
route segment. 

4. dn - The straight line distance between the aircraft's 
actual position point and the next fix. 

5. dr - The normal distance from the aircraft's actual 
position point to the aircraft's current route segment. 



 

 Based on the geometry depicted in Figure 5, the actual 
position of an aircraft would be considered to be in “perfect” 
lateral adherence when all of the following four conditions are 
true: α, β, and dr are equal to zero and dn equals da. 

Direction of flight track

dr

β

α

Cleared route

dn

da

 

Figure 5.  Geometry of Lateral Deviation – Adapted from [10] 

Although the calculation of all five metrics completely and 
accurately defines the lateral geometry involved, it is proposed 
that only two are actually necessary to adequately determine if 
an aircraft is laterally deviating from its route.  If a combination 
of the normal distance, dr, and the angle β are within certain 
predetermined thresholds, it could be stated that the aircraft is 
in lateral adherence to the current known route. 

Even though these metrics and their measured distributions 
are universal, the combinations of thresholds chosen to 
determine if an aircraft is in a state of lateral adherence are 
truly dependent on the DST application being supported.  For 
this paper, the thresholds chosen in and described in [11] to 
support a non-operational conflict probe will be used.  
Furthermore, a heuristic method was implemented in [11] to 
determine if the DST’s TP should utilize the flight plan or base 
its prediction strictly on course heading information from radar 
surveillance data.  This heuristic approach provides descriptive 
states of lateral adherence and non-adherence that can be 
utilized to quantify operational data.   

The heuristic algorithm is illustrated in the following Figure 
6.  It begins by calculating the normal distance to the route, dr, 
(or simply the lateral deviation) and the angle β to the next fix 
position on the route.  If at the end of the route, immediately 
end the calculation and label the state, endOfRoute.  This is an 
indeterminate case when the aircraft has gone past the end of 
the flight plan route and thus lateral intent is unknown.  If not 
at the end of the route, the lateral deviation is checked and if 
below a threshold, D1, is labeled to be in a state of innerInConf. 

 

Figure 6.  Lateral Adherence Heuristic States 

If the lateral deviation is larger than the threshold D1, then it 
is checked against a larger threshold D2. If it exceeds this 
threshold, it is labeled outerNonConf for the first out of lateral 
conformance state.  If the lateral deviation is below, both the 
lateral deviation and angle β are checked against thresholds D3 
and P1, respectively.  If both measures are below there 
respective threshold, the state is labeled midInConf for the last 
in conformance state or not as midNonConf as the last out of 
conformance state.  The thresholds used in this paper are listed 
in the following Table II. 

TABLE II.  THRESHOLDS FOR LATERAL ADHERENCE STATES 

Threshold Value (units) 

D1 0.5 (nm) 

D2 1.5 (nm) 

D3 1.0 (nm) 

P1 30 (deg) 

 

V. LATERAL INTENT RESULTS ON OPERATIONAL DATA 
The late professor and modern management theory pioneer, 

Peter F. Drucker, is attributed with the famous quote, “If you 
can’t measure it, you can’t manage it.”  Following this advice 
in perspective of the TP, intent, and deviation information 
subsequently presented, the previously described metrics are 
applied to a large set of operational data from the United States, 
Australia, and Europe.  This section provides a guide to the 
magnitude of the error in various contexts on the ground and in 
the air.  For the ground automation data, it also includes an 
analysis of aircraft conflict predictions. 



A. Lateral Deviation Results for Ground-Based Automation 
This paper utilizes United States air traffic data collected 

for a recent study in [11].  It includes seven hours of air traffic 
messages, amounting to approximately 50,000 flights, and 
associated adaptation (i.e. detailed definitions of airspace 
boundaries and fix locations for expanding the flight plans) 
collected on April 3, 2008 for all twenty en route ARTCCs 
within the continental United States. The air traffic messages 
were retrieved from the Host Air Traffic Management Data 
Distribution System (HADDS). The messages record each 
ARTCC’s air traffic control clearances and surveillance radar 
track positions. Next, the messages are parsed and planned 
routes are expanded from the flight plan amendments into a 
series of geographic positions. The data sample captures the 
afternoon peak traffic schedule including the traffic messages 
recorded from 17:00:00 to 23:59:59 UTC (Coordinated 
Universal Time).  The selected expanded routes and associated 
surveillance radar positions are the input data source for 
generating the lateral intent error metrics defined in Section IV.  
Table III provides the listing of ARTCC code versus location 
and the flight count per sample. 

For the European data discussed in this paper, the statistics 
are cited from the EUROCONTROL’s Flight Data 
Management Metrics project, published in [12].  The project’s 
objective is to measure the quality of flight data available to 
stakeholders, including data consistency, accuracy and other 
measures.  The data set represents a large European flight 
sample collected for one day in November 2006.   
Approximately 27,000 flights from EUROCONTROL’s 
Central Flow Management Unit were supplied by 31 European 
Air Navigation Service Providers (ANSPs) across Europe [12]. 

TABLE III.  U.S. ARTCC CODES & FLIGHT COUNT 

ARTCC 
Code 

Location Sample 
Flight Count 

ZAB Albuquerque 2014 
ZAU Chicago 3163 
ZBW Boston 1915 
ZDC Wash DC 3348 
ZDV Denver 2157 
ZFW Fort Worth 2570 
ZHU Houston 2617 
ZID Indianapolis 2946 
ZJX Jacksonville 3074 
ZKC Kansas City 2366 
ZLA Los Angeles 2586 
ZLC Salt Lake City 1619 
ZMA Miami 2138 
ZME Memphis 2751 
ZMP Minneapolis 2228 
ZNY New York 2597 
ZOA Oakland 1613 
ZOB Cleveland 3393 
ZSE Seattle 1106 
ZTL Atlanta 3818 

Total: 50019 
 

1) Lateral Deviation Statistics 
As cited in [12], the European data collection was 

conducted with the aid of the Eurocontrol Flight Information 

Consistency Analysis Tool (EFICAT).  For the two-
dimensional route analysis in [12], the field data was grouped 
into two categories: major lateral deviations from the route of 
50 nautical miles and a minor category between 20 and 50 
nautical miles.  There were 27,300 measurements taken.  Of 
them, 5,264 were determined to be minor deviations with an 
average lateral deviation from their flight plan of 30 nautical 
miles; 761 were cataloged as major deviations with an average 
lateral distance of 73 nautical miles.  This translates to about 
19% of the total flights having an average lateral deviation of 
30 nautical miles and 3% with an average deviation of 73 
nautical miles indicating that significant deviations do take 
place in the European airspace.  The study correlated these 
deviations to route length changes which indicated routes were 
deviated to fly more direct routes for fuel and time savings. 

For the United States data set, the lateral deviation between 
route and aircraft position, dr, as defined in Section IV, was 
calculated for each ARTCC recording as described above for 
all the aircraft radar track positions within the associated 
ARTCC’s air traffic control.  The result is a total of 8,111,087 
measurements taken from about 50,000 flights.  Table IV 
summarizes the results by ARTCC.  The sample sizes are large 
but so are the errors.  The variability of the data in the form of 
standard deviation metric ranged from about 10 to 45 nautical 
miles of lateral deviation.  The sample means ranged from 
about 1 to 7 nautical miles, however the medians (50th 
percentile) only ranged from -0.01 to 0.08 nautical miles.   

The difference between the sample median and mean 
statistics indicates the heavy tailed nature of these distributions.  
The sample mean is substantially increased by the presence of 
large lateral deviations on the order of hundreds of nautical 
miles, while the median is typically unaffected.  This 
observation is not uncommon.  In [13], it was independently 
reported that large tails were present in the lateral 
measurements collected from flights off the West coast of the 
United States in Oakland Oceanic and ZLA.  In the same paper, 
a parametric model was successfully fit to the measurements 
that described two distinct events occurring.  Interestingly, it 
showed some measurements were simply effected by typical 
deviations from centerline of an aircraft’s intended route, while 
others (large deviations in the tails) were generated by atypical 
events where aircraft changed route and the automation lacked 
the updated information.   

A reasonable indicator of the magnitude of the typical error 
behavior described above is the interquartile range (IQR).  IQR 
is the difference between the 75th and 25th percentiles as listed 
in Table IV.  By definition, IQR contains 50% of the 
distribution.  For all 20 ARTCCs, the IQR was on average 
about 1.4 nautical miles.  This is in contrast to the much larger 
standard deviation which captures both the typical and atypical 
behavior because it quantifies the entire spread of the 
distribution.  In this case, it captures both the large deviations 
from the heavy tails and the typical behavior near the center.  
For this data sample, the standard deviation and IQR are poorly 
correlated further justifying this claim.  Thus, ARTCCs with 
large standard deviations may not have large IQRs and vice 
versa.  



TABLE IV.  LATERAL DEVIATION STATISTICS BY ARTCC 

Descriptive Summary Statistics 

Percentiles (nm) 
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Sample 
Size 

25th 50th 75th 

Mean 
 

(nm) 

Std 
Dev 
(nm) 

United States Airspace: Center Data 
ZAB 427361 -0.399 0.014 0.562 1.352 15.326 
ZAU 435974 -0.406 0.050 0.846 2.238 15.706 
ZBW 303583 -0.570 0.081 1.700 3.727 22.329 
ZDC 565728 -0.319 -0.013 0.356 1.795 13.964 
ZDV 490275 -0.267 0.063 0.765 3.770 29.597 
ZFW 384097 -0.809 0.039 0.951 1.266 12.797 
ZHU 421271 -0.607 0.045 0.890 2.151 20.797 
ZID 430507 -0.376 0.059 0.671 1.371 10.867 
ZJX 540701 -0.714 0.056 1.100 1.361 11.486 
ZKC 443290 -0.571 0.041 0.977 2.943 24.252 
ZLA 367723 -0.337 0.014 0.743 5.652 26.665 
ZLC 348567 -0.458 0.015 0.545 2.704 22.985 
ZMA 377355 -1.000 0.068 2.100 6.397 44.761 
ZME 437666 -0.481 0.034 0.844 2.333 18.434 
ZMP 404147 -0.417 0.043 0.845 3.548 23.644 
ZNY 258725 -0.352 0.057 0.723 1.803 13.986 
ZOA 227412 -0.412 0.037 0.726 4.075 22.201 
ZOB 472835 -0.418 0.005 0.630 1.356 10.306 
ZSE 207031 -0.360 0.038 0.536 2.113 20.574 
ZTL 566839 -0.535 0.048 0.820 1.734 13.964 
Avg 405554 -0.493   0.039   0.857   2.579   20.816 

 
Cluster analysis is the classification of similar objects into 

groups [14-15].  For this data set, the 20 ARTCCs are clustered 
into similar groups in terms of the standard deviation and IQR 
statistics.  This allows us to select a subset of data for detailed 
analysis to infer claims about a group of ARTCCs.  More 
importantly, it may indicate some common characteristics of 
clusters associated to the lateral intent process.  Lateral intent is 
one of many input sources for a TP, but it does play a key roll 
as described in Section II and may predict the overall 
performance of a DST’s performance. Graphically, Figure 7 
illustrates a two dimensional bubble plot with y-axis in terms of 
standard deviation and x-axis in terms of IQR statistic.  The 
bubble’s size is proportional to the sample size from Table IV 
and the three colors denote the three identified clusters. 
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Figure 7.  Bubble Plot of U.S. ARTCC Statistics1 

                                                           
1 Bubble plot is generated using SAS Institute’s statistical package, JMP©. 

There are many mathematical approaches in determining 
the clusters for continuous data [14-16].  Hierarchical 
clustering divides the data in a successive number of steps 
where at each step the number of clusters increases until all the 
data remains in a single group.  Utilizing JMP© statistical 
software package, Ward’s minimum variance technique is 
applied here to produce a number of clusters [16].  Figure 8 
provides a graphic representation of the results of this 
technique.  This type of figure is called a denogram.  It 
represents a horizontal tree structure with single points as 
leaves, the final single cluster as the trunk, and the intermediate 
clusters as branches.  The cluster and color coding in Figure 8 
is logically consistent with the illustration in Figure 7. 
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Figure 8.  Denogram Tree Diagram of Clusters 

As shown in Figure 9, the red cluster of ARTCCs (the 
cluster with the lowest standard deviation) is concentrated in 
the East coast of the United States.  Interestingly, also in the 
east coast, Miami ARTCC (ZMA) represents the lone cluster 
with both the largest standard deviation and IQR relative to the 
other ARTCCs.  There could be a number of reasons for this 
result.  Convective or some other severe weather on this 
particular day could have caused increased reroutes in some 
areas of the country.  The nature of operations and composition 
of the airspace may play a role in differentiating some facilities 
or matching them.  ZMA in particular may be affected by 
oceanic traffic from the Atlantic and Caribbean and the 
limitations of radar coverage over these areas. 
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Figure 9.  United States Map of ARTCC Clusters 

Other metrics may give insights into the resulting clusters 
and distribution of lateral deviations among the ARTCCs.  
Each flight plan route as described in Section II is composed of 



a series of fix positions and airways.  Some of these positions 
along the route represent turns.  More frequent turns in theory 
may correlate to increased lateral deviations.  Aircraft in turns 
follow more variable arced paths versus straight paths on the 
rest of the trajectory.  Thus, measurements were calculated 
quantifying the fraction of turn fixes (positions on the flight 
plan route which formed a turn greater than 30 degrees) 
compared to the total number of fixes for each ARTCC.  The 
results for our 20 ARTCC sample ranged from 11% to 21%, 
where the largest was indeed ZMA.  However, overall the 
values did not align with the defined clusters or correlate to a 
significant degree to the standard deviation or IQR.  Between 
these two statistics, they were slightly more correlated to the 
IQR values.  Since IQR is postulated to be a better estimate of 
the typical lateral deviation and not a change in route itself, the 
result is consistent. 

It was also postulated that if more amendments were 
entered, then it would be more likely to capture the lateral 
intent and lower the resulting errors.  To test this, the average 
number of unique route amendments recorded per flight per 
ARTCC was calculated.  It ranged from approximately 3 to 11 
routes per flight with an average of 5 for all ARTCCs.  
However, the results indicated no correlation to the standard 
deviation and IQR metrics.  Also, there seemed to be no 
noticeable relationship to the clusters identified.  Thus, if 
amendments have an effect, it is the non-recorded variety that 
is the suspected cause for the errors being measured in this 
paper. 

Convective weather could play a role on the number of re-
routes and thus could influence the lateral intent.  Figure 10 
illustrates a weather map for the same date of the traffic 
recording, downloaded from the United States National 
Oceanic Atmospheric Administration [17].  It shows the 
precipitation areas and amounts in North America during the 
24 hours ending at 1200 UTC, with amounts to the nearest 
hundredth of an inch.  From the shading, ZMA did have 
significant precipitation during the sample date, yet so did other 
ARTCCs in the southern part of the country and some in the 
Midwest as well as the west coast. 

 

 

Figure 10.  North America Weather Map from [17] 

 

ZID, ZMA, and ZMP ARTCCs were selected from each of 
the three clusters and a detailed comparison of their lateral 
distributions was performed.  This is illustrated in Figure 11.  A 
box plot is depicted that illustrates the spread of the data.  The 
green histograms also portray the spread with height 
proportional to frequency.  The inner red box represents the 
25th, 50th, and 75th percentiles and extending lines referred to as 
whiskers are 1.5 times the IQR values (length of the box).  The 
blue lines are the mean values.  It is clear from the Figure 11 
that ZMA has significantly more variability than the other two 
ARTCCs with ZID having the lowest in terms of total spread, 
IQR and mean. 

 

Figure 11.  Detailed View on Selected ARTCCs 

2) Lateral Adherence State Statistics 
Lateral adherence states were defined in Section IV.  Figure 

12 illustrates the relative frequencies of each adherence state 
for a subset of ARTCCs. It presents the three selected 
ARTCC’s ZID, ZMP, and ZMA.  As shown earlier, the ZMA 
contains the largest amount of lateral deviation with 58% of the 
measurements out of conformance overall (i.e. sum of 
outerNonConf and midNonConf measurements), while ZID has 
only 34% out of conformance, and ZMP 41%.   

These states are intended to provide guidance on the current 
state of the aircraft in terms of conformance to its current route 
of flight.  The thresholds were already presented in Table II in 
Section IV.  These thresholds ensure that aircraft are labeled in 
conformance are laterally within one nautical mile of their 
route.  Based on the results reported in Table IV, this 
corresponds to about the average IQR.  This lateral adherence 
results are useful in [11] to determine the type of TP algorithm 
to apply.  In the next section, it is very useful to quantify the 
impact of lateral deviations on conflict prediction. 
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Figure 12.  Sample of Lateral Adherence States 

3) Impact of Lateral Error on Conflict Predictions 
A conflict between a pair of aircraft occurs when two or 

more aircraft fly within a defined, typically legally required, 
separation distance.  One of air traffic controllers’ core 
functions is to prevent these events from happening by clearing 
aircraft to fly trajectories where conflicts cannot occur or 
amending them to ensure they are resolved.  This requires a 
significant cognitive load involving the controller to maintain a 
positive mental picture of where the aircraft currently is and 
where it will fly sometime in the future.  The task load is 
increased by multiple aircraft traveling in different directions 
both vertically and horizontally.  A class of DSTs, called 
conflict probes (CPs), can aid in this challenging mental 
process by making automated trajectory predictions, notifying 
when a conflict may occur in the future, and in more advanced 
tools offering resolutions.  However, these predictions need to 
be accurate and timely to have utility for the air traffic 
controller.  Furthermore, the JPDO, SESAR, and Australian 
initiatives all require various conflict probes for their 
operational concepts of the future. 

Metrics have been defined that quantify the errors 
associated with these conflict predictions [18-20].  A missed 
alert error is a conflict between a pair of aircraft not detected at 
all or not notified within a minimum warning time prior to the 
conflict’s start time, typically five minutes for strategic conflict 
predictions.  A false alert error is a non-conflict event between 
two aircraft (called an encounter in this paper) that is detected 
by the CP or represents an alert of a conflict but is removed 
prior to the conflict occurring.  Thus, alerts must be timely and 
stable to be counted as valid (i.e. correctly detecting an aircraft 
conflict event with a required lead time).     

A CP testing methodology was developed in the late 1990s 
and documented in [21] that time shifts the recordings of actual 
aircraft position messages and air traffic control clearances to 
induce pseudo or test conflict events.  The modified traffic 
recording is then run through the CP as if it was real data.  The 
resulting alerts are matched with the test conflicts generated by 

the methodology to determine the rates of missed and false 
alert events from the sample recording.  For this study, the 
technique was applied on a flight plan based CP originally 
developed in [11] and run on a sample scenario taken from 
Indianapolis ARTCC (ZID).   

The sample contains four hours of time-shifted traffic data, 
amounting to approximately 1100 flights with 139 test conflict 
pairs for the CP to detect. The overall missed, false, and correct 
or valid alert quantities are as follows: 

• 98 events were valid alerts (VA) 

• 41 events were missed alerts (MA) 

• 903 events were false alerts (FA) 

The overall performance reported is slightly larger than normal 
because aircraft deviating significantly from the route are 
normally excluded from the error event counts for strategic or 
intent based CPs [19-20].  However, this particular study’s 
objective is to quantify the impact of lateral intent errors so 
excluding them would not allow their measurement. 

To evaluate whether lateral deviations influence the CP’s 
accuracy performance, the analysis first examined the two sets 
of conflict events: those that were correctly predicted (VAs) 
and those that were missed (MAs).  The analysis focused first 
on the distribution of maximum lateral deviation distance at the 
start of the conflict for these two sets of data for each of the 
flight pairs in conflict.  However, each event was further 
partitioned by the reason category in which there are four.  A 
missed alert is an error if no alert was present at all at the actual 
conflict start time.  This was labeled as “NO_CALL_MA”.  
The alternative is the CP did present an alert but within a 
threshold (five minutes for this study) time of the conflict start 
time.  This is labeled as “LATE_MA”.  The valid alerts had the 
remaining two sub-cases.  If the alert is presented before the 
conflict start time but again within the threshold time (same 
five minutes value as above) yet had a verified reason for being 
late, its labeled “LATE_VA”.  These late valid alerts are 
artifacts of the testing environment, such as a conflict that 
begins at the start of the traffic sample or within a threshold of 
a recorded clearance event.  These conflicts are considered 
“pop-up” events and the timeliness requirement is relaxed only 
for them.  The remaining VA events are the standard correct 
alerts that were correctly matched to a conflict and had the 
required warning time.  These are labeled “STD_VA”. 

Figure 13 displays the statistical box plot (in red), mean and 
standard deviation (in blue) for the four categories of VA and 
MA events.  The late VA events and the no-call MA events had 
the largest lateral deviations indicating the possible impact 
lateral deviation has on the CP.  Most notably was the contrast 
of the no-call MA events to the others.  The no-call MA had a 
sample mean of about 19 nautical miles and a standard 
deviation of 41 nautical miles, while the standard VA was 
almost half the size at 11 and 20 nautical miles, respectively. 
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Figure 13.  Lateral Deviation Distribution for VA and MA Reasons 

Like the MA versus VA analysis above, a false alert (FA) 
analysis was performed as well.  The total set of VA events has 
a lateral deviation mean and standard deviation of 11 and 17 
nautical miles contrasted to the FA events of 18 and 29 nautical 
miles.  As illustrated in Figure 14, the IQR (height of the box) 
is significantly larger for FA events compare the VA events as 
well.  This provides evidence to support the hypothesis that 
false alert predictions are induced in part to the lateral 
deviations of the aircraft the CP is processing. 
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Figure 14.  Lateral Deviation Distribution for VA and FA 

Next, a categorical statistical analysis was performed by 
first generating a 2 by 2 contingency table, illustrated in Table 
V. The table partitions conflict events by their lateral adherence 
state and whether the event was predicted (alert or no alert) by 
the CP.  These alert counts represent the VA and MA events 
partitioned by their lateral adherence state at the conflict start 
time. If either flight of the conflict pair was in a state of out of 
adherence as defined in Section IV, then the conflict event was 
labeled out and in otherwise.  Of the total 98 alert events (VAs) 
38 were “In” and 60 were “Out”.  In contrast, the 41 conflicts 
without alerts (MAs) had 14 that were “In” and 27 were “Out”.  
If the lateral deviations classified by lateral adherence state did 
not impact the CP’s conflict predictions, then the ratio of alerts 
and non-alerts (VA and MAs) would be the same for both 
subsets of true conflicts. This can be tested statistically as 

defined in [22-23] and expressed in (1) by calculating the ratio 
of the squared difference between the expected value of each 
count and the observed value.  If the hypothesis is true, this 
ratio will follow a chi-squared distribution with one degree of 
freedom. The expected value is calculated by determining the 
proportion of total conflicts events by the ratio of alert events.  
For example, the expected VA count is calculated by 
multiplying the proportion of total conflicts that were in 
adherence (52 from Table V) by the total ratio of VA events 
(98/139).  This results in 37 and listed in the upper right corner 
cell in Table V.  Thus, application of (1) to all values in Table 
V produces a p-value larger than 0.1, and thus the hypothesis 
cannot be rejected that the number of MA events are not 
correlated to an out of adherence state at 0.1 significance level. 

The test statistic is χ 2
, defined as follows: 
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TABLE V.  CONTINGENCY TABLE FOR CONFLICT EVENTS 

Conflict Event Counts For Each 
Lateral Adherence State Alert 

State In  Out Totals 
 37  61 

Alert 
38 60 98 

 15  26 No 
Alert 14 27 41 

52 87 Totals 

χ2=0.265, df=1; p-value=0.607 

139 

 

Table VI illustrates the opposite result for the analogous 
encounter events (non-conflict) and associated alerts (FAs). 
The result indicates that more encounter events are alerted than 
expected for the proportion of encounters that were labeled 
“Out” and less for “In” adherence. Thus, there is statistical 
evidence with a p-value near zero to reject the hypothesis that 
FA events are not affected by lateral adherence. 

TABLE VI.  CONTINGENCY TABLE FOR ENCOUNTER EVENTS 

Encounter Event Counts For Each 
Lateral Adherence State Alert 

State In  Out Totals 
 313  376 

Alert 
175 514 689 

 1993  2401 No 
Alert 2131 2263 4394 

2306 2777 Totals 

χ2=128.22, df=1; p-value=0.000 

5083 



One additional analysis was performed on the FA events. A 
unitless ratio called the min-max ratio was calculated for all 
non-conflict encounter events and matched to the associated 
FA events.  The min-max ratio is defined in detail in [18].  To 
summarize, the maximum ratio between horizontal separation 
and the horizontal separation standard (e.g. 5 nautical miles) 
and the vertical separation and vertical standard (e.g. 1000 feet) 
is calculated for each time coincident surveillance position 
between the aircraft of the encounter. The minimum of all 
values represents the minimum distance in both dimensions the 
aircraft pair were separated.  Also, if the ratio is less than one, 
the encounter would be a conflict event.  The min-max ratio 
provides a guide to how close the aircraft came in terms of the 
separation standards and combines both horizontal and vertical 
dimensions into one parameter. 

For the Figure 15 below, the total number of encounters 
between each 0.5 min-max ratio starting at 1 was calculated 
and the associated FA events as well.  The fractions of 
associated FA events to the total encounters per bin were 
calculated.  In Figure 15, the results are plotted with the y-axis 
as the fraction (estimate of probably of alerts for the bin) and 
the x-axis is the min-max ratio from 1 to 5.5.  The figure’s fit 
curves are power series best fits for these data points.  The 
slope of the curve is proportional to the overall sensitivity of 
the CP to the separation of the encounters it is predicting and 
the area is roughly equal to the total false alert probability. 

Figure 15 fit three curves. The green square labeled curve 
represents the predictions for alerts that are in lateral adherence 
at notification time.  The red triangle labeled curve is for the 
out of adherence version and the curve with blue circles 
represents all the alerts, both in and out of adherence.  It is 
clearly shown that the steepest curve is the in adherence 
version and least is the out of adherence version with the all 
curve in between.  This gives a good indication that lateral 
adherence affects the overall sensitivity and thus performance 
of the CP.  It provides direct empirical evidence on the impact 
of lateral adherence on conflict prediction. 
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Figure 15.  False Alert Probability Curves for Lateral Adherence State 

B. Lateral Deviation Results from Airborne Automation 
As envisioned by the JPDO, SESAR, and Australian ATM 

Strategic planners to some degree, the large lateral errors 

described in this paper for the ground-based automation 
systems in both the American and European airspaces have 
relatively near term solutions. Specifically, an alternate 
approach to aviation automation both air and ground is to 
exchange trajectory information constructed and contained 
within the aircraft’s Flight Management System (FMS) 
computer then utilize this data in the ground system TP. The 
impact as presented in the CP, described in this paper, is just 
one example of many of the potential improvement 
opportunities.   

One currently available source of aircraft derived trajectory 
information is the Automatic Dependent Surveillance Contract 
(ADS-C). ADS-C is a dependent form of surveillance in which 
a ground station initiates a contract (dynamic agreement) with 
an aircraft such that the aircraft will automatically report 
information obtained from its onboard equipment according to 
conditions specified in the contract. A Future Air Navigation 
System (FANS) equipped aircraft can have up to four specific 
contracts with individual ground stations plus a contract with 
the Airline Operations Center (AOC).  

The current positions in the ADS-C data is based on very 
precise (relative to ground based radar reports) Global Satellite 
System (GPS) position reports, and the route positions are the 
exactly what the guidance system within the aircraft’s FMS is 
currently flying to.  Like the ground based counterpart 
presented in the previous sections, lateral deviations between 
the current ADS-C positions and route positions were 
calculated from two different sources. This section will report 
on the lateral deviations supplied by Airservices Australia 
using data from Australian controlled airspace and similar data 
in the United States from the FAA’s Separation Standards 
Analysis Team from air traffic collected off the West coast of 
the United States. 

ADS-C’s periodic contract specifies the reporting rate and 
what data groups are requested in each ADS Basic Periodic 
Report. The following groups can be requested: 

• Basic Group containing current position, altitude and 
time. 

• Earth Reference Group containing groundspeed, true 
track and vertical rate. 

• Air Reference Group containing Mach number, true 
heading and vertical rate. 

• Meteorological Group containing aircraft measured 
wind speed, wind direction and temperature. 

• Predicted Route Group (PRG) containing a position 
and arrival time estimate for the next waypoint and a 
position estimate for the waypoint that follows. 

• Intermediate Projected Intent (IPI) containing position 
and arrival time estimates for a maximum of ten 
trajectory change points (not necessary waypoints, e.g. 
Top of Descent) ahead of the aircraft. 

Besides periodic contracts, there are event contracts and 
demand contracts. The event contract specifies that for a 
particular event (e.g. waypoint change event or altitude range 
deviation event) an ADS report needs to be down linked. The 



demand contract is a one-time request for an additional Basic 
Periodic Report. 

1) Australian ADS-C Lateral Deviations 
The Australian ADS-C data extracted for this study was 

collected between February 2008 to January 2009 during the 
Tailored Arrivals trial performed by Airservices Australia and 
participating partners. The primary focus of the Tailored 
Arrivals research is to determine the accuracy and consistency 
of the aircraft’s intended trajectory provided by the 
Intermediate Projected Intent of the ADS Basic Periodic 
Report. To eliminate to the maximum extent possible external 
variables it is important for the onboard automation to fly the 
aircraft in FMS in both lateral and vertical navigation (i.e. 
LNAV and VNAV) control modes without human intervention.  

The ADS-C data was obtained from flights arriving in the 
early morning, which due to the relative low traffic density 
were highly unlikely to be subject to air traffic control (ATC) 
intervention for the arrival. Coupled with the published runway 
linked Standard Terminal Arrival Routes at the destination, the 
trajectory of these aircraft can be stable in excess of two hours 
prior to destination. The consistency of processing these 
aircraft permits the extraction and analysis of intent data from 
these flights commencing two hours prior to destination. For 
consistent results the flight crew were issued with instructions 
to operate in both LNAV and VNAV modes and ATC were 
asked not to intervene unless absolutely necessary. The FMS 
and onboard automation was permitted to operate the aircraft as 
optimally as possible2. Without ATC or pilot intervention the 
ADS-C position reports of these flights form a consistent and 
valid data set to analyze lateral deviations from the FMS 
intended track. The intended or planned track of the aircraft can 
be constructed from the PRG of the ADS Basic Periodic Report 
which is consistent with the ground based flight-planned track 
and actually includes any direct-to clearance programmed into 
the FMS3.  

To extract the data from these in service aircraft an 
unmanned duplicate ATC system was established to initiate 
ADS contracts specifically tailored to the data collection via a 
separate and additional ADS-C connection. The ADS contract 
for data collection purposes differed from the ATSP 
operational contract by an increased reporting rate at two 
minutes plus supply of all downloadable data. The high 
reporting frequency was required to analyze the accuracy and 
consistency of the Intermediate Projected Intent (IPI) over 
subsequent reports4. During the two hour data extraction, at 
least 60 ADS-C Basic Periodic Reports were received per 
flight. 

                                                           
2Operating optimally in this context means operating to a flight-specific Cost 
Index (CI) determined by the AOC to achieve maximum efficiency in overall 
network operations. 
3For purposes of this study it is preferred to construct the reference track from 
which to determine the lateral deviation from the PRG over the IPI, in contrast 
to the fixed position of the waypoints in the PRG. 
4The position estimates of the trajectory change points in the IPI are given by 
bearing and distances from the aircraft’s current position. The subsequent 
dynamic conversion to latitude and longitude causes these positions to vary 
per ADS report. This variation directly influences the lateral deviation as 
determined with respect to the IPI track. 

All ADS-C data used in this study were obtained from 
eastbound flights departing from Dubai and Singapore to 
Melbourne and Adelaide. Data extraction commenced when 
the aircraft was approximately two hours of destination, 
typically somewhere around 1000 nautical miles from 
destination. The flights were performed by Airbus A330-300, 
Airbus A340-500, Boeing 747-400 and Boeing 777-300 
aircraft (all Honeywell FMS).  The data included a total of 778 
flights with an average of 34.4 reports per flight.  The 
following lists the break down of flights per aircraft type: 

• There were 58 flights of type Airbus A330-300. 

• There were 168 flights of type Airbus A340-500. 

• There were 258 flights of type Boeing 747-400. 

• There were 294 flights of type Boeing 777-300. 

As listed in the Table VII in row labeled A.A., a total of 
26,731 ADS-C position reports were analyzed and processed 
for lateral deviation between the ADS-C Basic Group current 
position and properly matched the previous PRG next and next 
plus one route positions.  Thus, the lateral deviation is 
calculated between the aircraft’s precise GPS position to the 
aircraft’s matched current FMS known route segment.  The 
results are tremendously accurate compared to the ground-
based version reported on in Table IV.  The standard deviation 
and IQR are approximately 800 and 40 times smaller than the 
U.S. ground-based data results.  Translated to feet, the standard 
deviation amounts to approximately 160 feet and IQR about 
200 feet.  The histogram depicted the distribution of these 
errors is illustrated in Figure 16.  It forms a fairly symmetric 
distribution about the slightly negative mean and sharply 
peaked like previous studies [13]. 
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Figure 16.  Histogram of Lateral Deviations of Australian ADS-C Data 



 

TABLE VII.  AIRBORNE LATERAL DEVIATION STATISTICS 

Descriptive Summary Statistics 
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Sample 
Size 25th 50th 75th 

Mean 
 

(nm) 

Std 
Dev 
(nm) 

United States Airspace: ADS-C Dataa 
U.S. 39012 -0.018 -0.002 0.007 -0.001 0.184 

Australian Airspace: ADS-C Data 
A.A. 26731 -0.019 -0.002 0.015 -0.003 0.026 

a. Adapted from Table 4 in [13] 

2) American ADS-C Lateral Deviations 
A separate analysis of ADS-C lateral deviations was 

conducted in 2007 by the FAA’s Separation Standards 
Analysis Team from air traffic collected off the West coast of 
the United States.  The detailed results are published in [13].  
The results are summarized in Table VII within the table row 
labeled U.S.  Like the Australian results, the performance is 
orders of magnitude larger than the ground based version. The 
sample standard deviation is over 100 times smaller than the 
ARTCC results, and the IQR is as much as 60 times smaller as 
well.  In units of feet, the standard deviation and IQR translate 
to about 1100 and 150 feet, respectively.  The detailed study in 
[13] not only reports on descriptive statistics but fits the 
distribution of errors to a specific parametric model.  This 
model is the beyond the scope of this paper, but indicates that 
the errors being studied can be mathematically modeled and 
utilized for simulation experiments of a future ATM system 
where synchronization of these data sources can be studied 
further. 

Comparing the two sources of ADS-C results indicate some 
of the differences between the two samples.  The Australian 
data was collected on a sub-set of flights and ATC intervention 
was purposely excluded by the study or removed in analysis.  
Additionally, pilots were restricted in the FMS mode of 
operation they could use for the flights.   Thus, large deviations 
due to changes in the ATC cleared flight plan were typically 
not present in the Australian data set.  For the United States 
version, the data was collected for 105 days between January 
and early June of 2007.  The data consisted of trans-oceanic 
flights leaving Oakland oceanic ATC control center and 
entering the west coast airspace of ZLA (Los Angeles 
ARTCC).  The data was not purposely filtered for ATC 
deviations or coordinated beyond the normal operational ADS-
C process.  Thus, the larger difference between IQR and 
standard deviation in the United States data and in general 
larger standard deviation indicates that these outlier events 
most likely did occur and increased the variance to several 
times the quantity measured in Australia.  However, both ADS-
C data sets provide strong evidence of the tremendous 
improvement in the form of lateral accuracy compared to the 
ground based versions reported on in the United States and 
Europe. 

VI. CONCLUSIONS 
Fostered by the broad next generation ATM initiatives from 

JPDO, SESAR, and Australia’s ATM Strategic Plan, the 
overall objective of this study was two fold: quantify the lateral 
deviations between known flight plan routes within the ground 
and air automation systems across the globe and second 
determine the impact of these errors on some of the DST 
functions required for ATC operations.  The collaboration of 
American, European, and Australian researchers provides a 
broad international perspective and relevance to both the 
analysis and the source data collected.   

Besides the need to collaborate for savings in resources, the 
particular problem being studied, error of lateral intent in our 
ATM automation system, is clearly a global issue for all 
ATSPs.  The results from the large United States data 
collection of 50,000 flights and over eight million 
measurements reported a standard deviation of approximately 
21 nautical miles.  The European results sited from [12] 
reported an average lateral deviation of 30 nautical miles for 
19% of the flight measurements taken from a broad data 
collection of about 27,000 flights across European airspace. 

The ground-based results are contrasted with airborne FMS 
navigated route positions and GPS generated current positions 
collected using ADS-C.  Data from both the United States and 
Australia reported lateral deviation errors 100 to 800 times 
smaller than the ground-based version.  Australian ADS-C data 
as listed in Table VII had standard deviations of approximately 
0.03 nautical miles which translates to less than 200 feet. 

ATC personnel as defined in the broad ATM initiatives 
previously cited will need accurate DSTs to support the 
complex and safety critical operations they perform.  The CP is 
a DST that directly supports the separation management 
function by notifying when two or more aircraft are predicted 
to violate separation standards (i.e. have a conflict) in the 
future.  A flight plan or intent based CP was input a set of test 
scenarios with slightly altered field recordings of actual aircraft 
flights.  About 140 test conflicts and 1100 flights were 
evaluated to determine if lateral adherence state had 
statistically significant impacts on the CP’s conflict predictions.  
For lateral deviations between zero and one nautical mile 
contrasted against events with larger deviations, the CP’s 
performance had indeed degraded when contrasting the 
laterally challenged events.  For example, false alerts (errors in 
reporting a conflict will occur when it was not actually in 
conflict) were about 12% more likely if out of conformance 
and about 27% less likely if in conformance as compared to 
correct predictions of actual conflicts.  Other results indicated 
marginal or inconclusive results for missed alert (not detecting 
a conflict that really occurs), but the overall sensitivity of the 
CP’s predictions as a function of the separation distance 
between aircraft was significant and illustrated in Figure 15. 

Therefore, the large ground-based deviations reported and 
impact demonstrated on a CP tool show lateral deviations are a 
key source of error in our ground-based TP process, core to 
many of our DST functions.  Synchronization with airborne 
data sources like ADS-C offer a reliable and tremendously 
accurate solution to improving the ground based predictions.  



The next step is integration of these systems to provide the 
benefits proposed. 

Overall, the international collaboration that took place to 
perform this study is the type of global cooperation that will be 
needed to address the challenging ATM problems faced by all 
nations and ATSPs.  The study reports on one aspect of the TP 
process highlighted in Section II.  Vertical deviations, time 
based errors, and weather forecasts mark only a few that can 
continue to be studied in the same manner set forth in this 
paper. 

REFERENCES 
 

[1] Joint Planning and Development Office, “Concept of Operations for the 
Next Generation Air Transportation System,” Version 2.0, [online 
library], URL: http://www.jpdo.gov/library/NextGen_v2.0.pdf, June 
2007. 

[2] EUROCONTROL, “Single European Sky ATM Research (SESAR) In 
Brief, Delivering the Future ATM System in Partnership,” [online 
library], URL: http://www.eurocontrol.int/sesar/, October 2008. 

[3] S. Mondoloni, M. Paglione, S. Swierstra, C. Garcia-Avello, S. M. Green, 
“A Structured Approach for Validation and Verification of Aircraft 
Trajectory Predictors,” 23rd Digital Avionics Systems Conference, Salt 
Lake City, Utah, October 2004. 

[4] S. Mondoloni, S. Swierstra, “Commonality in Disparate Trajectory 
Predictors for Air Traffic Management Applications,” 24th Digital 
Avionics Systems Conference, Washington D.C., October 2005. 

[5] S. M. Green, , R. A. Vivona, M. P. Grace, T. C. Fang, “Field Evaluation 
of Descent Advisor Trajectory Prediction Accuracy for En Route 
Clearance Advisories,” American Institute of Aeronautics and 
Astronautics Guidance, Navigation, and Control Conference, AIAA-98-
4479, Boston, MA.,1998. 

[6] D. Brudnicki, W. Arthur, K. Lindsay, “URET Scenario-based Functional 
Performance Requirements Document,” MTR98W0000044, MITRE 
CAASD, April 1998. 

[7] S. Mondoloni, “Aircraft Trajectory Prediction Errors: Including a 
Summary of Error Sources and Data,” FAA EUROCONTROL Action 
Plan 16: Common Trajectory Prediction Capabilities [online library], 
URL: http://acy.tc.faa.gov/cpat/tjm/, July, 2006. 

[8] K. Lindsay, “Results of a URET Operational Utility Experiment,” 
MTR99W0000081, MTRE CAASD, January 2000. 

[9] M. Paglione, R. D. Oaks, H. F. Ryan, S. S. Summerill, “Description of 
Accuracy Scenarios for the Acceptance Testing of the User Request 
Evaluation Tool (URET) / Core Capability Limited Deployment 
(CCLD),”  Federal Aviation Administration, William J. Hughes 
Technical Center, Atlantic City, NJ, January 27, 2000. 

[10] R. D. Oaks, M. Paglione, “Determination of Lateral Flight Adherence in 
Recorded Air Traffic Data,” American Institute of Aeronautics and 
Astronautics Guidance, Navigation, and Control Conference, San 
Francisco, CA, August 15-18, 2005. 

[11] M. M. Paglione, C. Santiago, A. Crowell, R. D. Oaks, “Analysis of the 
Aircraft to Aircraft Conflict Properties in the National Airspace 
System,” American Institute of Aeronautics and Astronautics Guidance, 
Navigation, and Control Conference, AIAA 2008-7143, Honolulu, 
Hawaii, August 18-21, 2008. 

[12] EUROCONTROL, “Flight Data Metrics, Overall Report on the 15 
November 2006 Data Collection,” CGP07/86/35.08, Contract: EFICAT, 
July, 2007. 

[13] C. Gerhardt-Falk, L. Martin, S. Ellis, “Correlation of Airborne Position 
Estimates to Ground Based Independent Estimates and Deviations from 
Flight-Planned Tracks,” American Institute of Aeronautics and 
Astronautics Guidance, Navigation, and Control Conference, AIAA 
2007-6520, Hilton Head, South Carolina, August 2007.. 

[14] B. S. Everitt, S. Landau, M. Leese, Cluster Analysis, 4th ed., Oxford 
Press 2001. 

[15] L. Kaufman, P. J. Rousseeuw, Finding Groups in Data, An Introduction 
to Cluster Analysis, John Wiley and Sons, 2005. 

[16] SAS Institute Inc., JMP Statistics and Graphics Guide, Release 7, 2007. 
[17] United States National Oceanic Atmospheric Administration, NOAA 

Central Library U.S. Daily Weather Maps Project, [online library], URL: 
http://www.hpc.ncep.noaa.gov/dailywxmap/index.html. 

[18] M. Paglione, M. Cale, H. Ryan, “Generic Metrics for the Estimation of 
the Conflict Prediction Accuracy of Aircraft to Aircraft Conflicts by a 
Strategic Conflict Probe Tool,” Air Traffic Control Quarterly, Vol. 7 (3), 
Fall 1999. 

[19] K. Bilimoria, “A Methodology for the Performance Evaluation of a 
Conflict Probe,” Journal of Guidance, Control, and Dynamics, Vol. 24 
(3), May-June 2001. 

[20] M. Paglione, R. Oaks, H. Ryan, “Methodology for Evaluation and 
Regression Testing a Conflict Probe,” Digital Avionics System 
Conference, October 2004. 

[21] M. Paglione, R. D. Oaks, K. D. Bilimoria, “Methodology for Generating 
Conflict Scenarios by Time Shifting Recorded Traffic Data,” American 
Institute of Aeronautics and Astronautics Technology, Integration, and 
Operations (ATIO) Technical Forum, November 2003. 

[22] Kachigan, Statistical Analysis, An Interdisciplinary Introduction to 
Univariate and Multivariate Methods, Radius Press, 1986. 

[23] A. Agresti, Categorical Data Analysis, 2nd ed., John Wiley and Sons, 
2002. 

AUTHOR BIOGRAPHY 
 
Mike M. Paglione graduated from Rutgers University College of 
Engineering, in New Brunswick New Jersey in the U.S.A. with a B.S. degree 
in Industrial Engineering in 1991.  He obtained a M.S. degree in Industrial and 
Systems Engineering in 1996 from Rutgers University Graduate School., in 
the U.S.A. 

He is the Conflict Probe Assessment Team Lead in the Federal 
Aviation Administration’s Simulation and Analysis Group at the FAA W. J. 
Hughes Technical Center, Atlantic City, New Jersey.  He was FAA’s Rutgers 
University Fellow from 1994-1996, Accuracy Test Lead for the FAA’s User 
Request Evaluation Tool, Program Manager for the Joint University Program 
from 1999 to 2004, currently project lead on the Automation Metrics Test 
Working Group (a cross organizational team developing and implementing 
metrics for the En Route Automation Modernization Program), and a local 
team lead supporting a NextGen project investigating improvement to the 
separation management functions in the en route automation  

Mr. Paglione is a senior member of the American Institute of 
Aeronautics and Astronautics (AIAA) and has numerous publications in the 
area of air traffic management automation, especially in the evaluation and 
testing of operational systems. 
 
Ibrahim Bayraktutar graduated from Middle East Technical University, 
Turkey with a B.S. degree in Industrial Engineering in 1990. He obtained a 
M.S. degree in Systems Analysis in 1992 and a M.S. degree in Operations 
Research in 1993, both from Miami University, U.S.A.  

He has been working for EUROCONTROL since 1994 
participating in various areas regarding Air Traffic Management, specializing 
in Trajectory Prediction and Management. He is currently managing 
Trajectory Management Framework activities in ATC Operations and 
Systems unit.  He has several publications on Systems Analysis, Systems 
Dynamic Modelling and Trajectory Prediction/Management (e.g. Impact of 
Factors, Conditions and Metrics on Trajectory Prediction Accuracy with 
Stephane Mondoloni, CSSI Inc. at FAA/EUROCONTROL R&D Seminar, 
Baltimore, U.S.A. in 2005)  

Mr. Bayraktutar is the co-chair of EUROCONTROL-FAA Action 
Plan 16 on Common Trajectory Prediction Capability. He is also a member of 
ORSA (Operations Research Society of America). 

 
Greg McDonald commenced work as an Australian Air Traffic Controller in 
1981. He obtained an associate diploma of applied science in Computing in 
1993 and a degree in Computing in 1996, both from Monash University, 
Australia.  



He has been working for Airservices Australia and its predecessors 
since 1981 in various roles including radar, non radar sectors plus tower and 
Search & Rescue. Since 1995 he has worked in an Operational Support role 
participating in various activities necessary to ensure Australian ATC is 
conducted efficiently and safely among which was the development of the 
Australian ATM Strategic Plan. He was the project manager for AUSOTS the 
Australian Flex Track initiative designed to deliver route efficiencies to 
airlines operating in the Australian Environment. He is currently managing the 
Tailored Arrivals Trial in Australia and examining the accuracy and possible 
ground system use of aircraft derived trajectory data.  

Mr. McDonald is Australian representative for EUROCONTROL-
FAA Action Plan 16 on Common Trajectory Prediction Capability.  

 
Jesper Bronsvoort is an Aerospace Engineer currently working with 
Airservices Australia as part of his postgraduate education in Aerospace 
Engineering at Delft University of Technology, the Netherlands. He holds a 
cum laude BSc. degree in Aerospace Engineering from Delft University of 
Technology, The Netherlands (2006). 

In his postgraduate, he particularly focuses on the field of 
optimization of flight operations. He is currently performing research into the 
use of aircraft derived data to improve trajectory prediction for decision 
support tools. 


