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Noise impact on communities is one of the major 
limitations to air transportation infrastructure 
expansion
Noise target levels require 
improvements in both 
aircraft design + 
operational procedures 
Continuous Descent 
Approach (CDA) 
procedures can reduce 
noise exposure by 3-6.5 
dBA (3dB= 50% acoustic 
energy reduction)
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Keep aircraft higher and at lower thrust 
for longer than conventional approach
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CDA Concept- Vertical/Lateral 
coupling

Basic CDA
Controller: 

• Retains lateral  & speed control
• Provides track distance estimate

Pilot:
• Estimates descent rate using 

track distance

RNAV CDA
Controller:

• Clears aircraft for RNAV 
approach

Pilot & FMS:
• Programmed approach
• Optimized descent rate 

using altitude targets 
and speed 
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Final
Approach

Fix

“Fly heading 210,   
Clear to descend,  
Track Distance 20 
nm”

“Turn left heading 180, 
Track Distance 20 nm”

“Fly heading 250, 
Clear to descend, 
Track Distance 30 
nm”

WP1

RNP
region

WP3

WP2

Final
Approach

Fix

“Cleared RNAV 
approach”
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Motivation for Investigation of  
CDA Human Factors Issues

CDA procedures are significantly different 
than the conventional approach currently in 
use and have implications on controller 
cognitive processes, including projection
Implementation of the CDA procedures may 
present challenges with approach operations:

Traffic throughput 
• 50% throughput reduction compared with conventional 

approach in trials conducted by Clarke, Ho, & Ren, 2004
Controller acceptance of procedure (effect on 
cognitive processes)
Controller workload
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ATC Process Model Development 
Incorporates Endsley’s Situation Awareness Model & 
Pawlak’s Decision Processes model
Modified based on U.S. ATC 7110.65 & Boston & NY SOPs
Site visits used to revise model (Boston, NY, Manchester, 
Reykjavik)

Application of ATC Process Model to Final Approach 
Task
Cognitive Difference Analysis performed using ATC 
Process Model as a means to identify cognitive 
issues with CDA procedures
Experiment performed testing utility of an identified 
key approach abstraction
CDA procedure implementation guidance provided 
based on results
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(ILS)

Outer Marker 
(handoff to 

tower)

Final Approach 
Sector 

Boundary

Vector aircraft onto 
approach (laterally 
& vertically)

Manage separation: 

•Compress traffic in 
periods of high 
demand

•Ensure minimum 
separation

•1000 ft vertical, 
OR

•3-6 nm (wake 
vortex) 
longitudinal

Other tasks
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Information/Display System 
Detailed View of Dynamic Information

Secondary 
Radar

Host Computer 
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Position-based
Vertical (e.g., descend and 
maintain <altitude> feet)

Lateral (e.g., Turn left/right  to 
<heading> degrees)

Velocity-based
Lateral (e.g., change speed to 
<kts>)
Vertical (e.g., expedite descent)

Trajectory-based (e.g., cleared 
ILS 4R)

Constraint
Temporal (e.g., 
…until/after/before <time>)
Lateral (e.g., …until <fix>)
Vertical (e.g., …at/below/above 
<alt> ft)
Coordination (e.g., …until 
advised by <unit>)

Procedures Control Command Availability Cognitive Abstractions
Limited set of commands allow controller to modify the evolution of the 
situation at different levels:

System cycle time limits response to system (~30 sec for TRACON)
Pilot response time
Aircraft response time
Surveillance update

Reduces intent uncertainty
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Reduce Speed

Heading

Change 
altitude

Position-based (heading/ 
altitude) and velocity-based 
controls are used most 
frequently
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Projection is defined as the evolution of the mental model of 
the system into the future over the time required to execute 
and surveill a response to a command to keep the future 
behavior of the system within the task requirements
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Time of
projection

Time into
the future

Persistence
region

Deterministic
region

Probabilistic
region

Uncertainty
Future

propagation
regions

Limit of deterministic
predictability

Task-based Projection 
Requirement
•Procedure

•Controllability
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Dynamic Abstractions

Dynamic abstractions are the abstractions which support 
projection of the system dynamics, e.g.:

Constant Velocity
Constant Altitude
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Constant altitudes (CA) (achieved either through clearances 
or through procedures) ensures that merging traffic flows will 
be separated in at least the vertical dimension 

(ILS 
interception)

Alt. separation

Long. 
separation

A
lti

tu
de

Time

Vertical 
separation

Lateral 
separation

Vertical

Lateral

Constant 
Altitude

Constant 
Altitude



MIT  MIT  
ICAT  ICAT  Constant Velocity Abstraction

O
ve

r t
im

e

Constant velocity (CV) is used as a way to establish a pattern 
to aid projection by equalizing distance traveled between 
updates
If minimum lateral separation between 2 aircraft is reached, 
controllers can ensure this separation throughout the 
approach by commanding the aircraft to proceed at the same 
speed
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Cognitive Differences between 
Conventional & CDA Procedures
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Key Cognitive Differences
Loss of abstractions (constant velocity & constant altitude)
Reduction of controllability
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Reduce Speed

Heading

Change 
altitude

Reduce Speed

Heading

Change 
altitude

Basic CDA RNAV CDA



MIT  MIT  
ICAT  ICAT  

Time of Projection Changes 
in RNAV procedure

Time of
projection

Time into
the future

Persistence
region

Deterministic
region

Probabilistic
region

Uncertainty
Future

propagation
regions

Limit of deterministic
predictability

Reducing controllability increases the timescale over which 
projection required, making projection more difficult

RNAV Approach 
Projection Requirement
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Controller may substitute lost abstractions 
with more complicated abstractions

Aircraft are descending at different rates (Basic & 
RNAV CDAs)
Aircraft may be in speed transition over longer 
periods (RNAV CDA)

Variability of dynamics in CDAs may also 
increase 

Dynamics vary with track distance & aircraft type 
in Basic CDA and vary with aircraft type & FMS 
logic in RNAV CDA
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Workload Impacts 
in CDA Procedures

Basic CDA
Track distance task is added
Vertical projection task more complicated

RNAV CDA
Projection time into the future increases
Tactical control decreases
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Primary cognitive differences:
 Basic CDA RNAV CDA 
Structure-
based 
Abstractions 

Loss of Constant 
Altitude abstraction 

Loss of Constant Altitude & 
Constant Velocity 
abstractions 

Controllability Loss of altitude 
controllability; 
Addition of Track 
Distance control 

Loss of state (heading & 
altitude) and velocity 
controllability;  
Only “clear”/”abort” procedure 

Time into 
Future Req. 

No difference Extended time into future 
projection requirement 

Complexity of 
dynamics  

Vertical complexity 
increases 

Vertical & Longitudinal 
complexity increases; 
Lateral complexity decreases 

Variability of 
dynamics 

Vertical variability 
increases 

Vertical & longitudinal 
variability increases; Lateral 
variability decreases 

Controller 
Workload 

May increase due to 
track distance 
estimations and 
vertical projection 
requirements 

May increase due to 
requirement to project further 
into future due to lack of 
tactical controllability 
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Constant Velocity 
Structure Experiment

Constant Velocity was identified as a key abstraction 
in the Cognitive Difference Analysis
Can controllers create new abstractions to replace 
lost constant velocity abstraction?

Hypothesis: Periods of constant speed are a key 
structure-based abstraction used in improving 
projection performance.
Goal: Determine if some benefits provided by 
constant speed structure lost during low noise 
approach can be recovered by using standard 
deceleration profiles
Controllers’ Task:  project the final separation of a 
pair of aircraft at different times, but do not issue 
control commands
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Deceleration profile:
Both constant speed
Mixed:  One constant 
speed, one decelerating
Both decelerating

Endspeed of aircraft
Aircraft 1 faster (opening 
case)
Aircraft 2 faster (closing 
case)
Same

Final separation is 
counterbalanced across 
cases
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3 projections of final 
separation must be made, 
each made by the time that 
Aircraft 1 passes a blue 
hash mark on the flight 
path
Projection is recorded 
using red arrowheads
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Accuracy of projection
Difference between projected separation & 
actual separation when aircraft 1 crosses 
the threshold

Subjective rating of difficulty of constant 
versus decelerating aircraft projection 
and the strategy used to project 
separation
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8 French student controllers with an 
average of 1.25 years experience
5 were Approach/Tower controllers
2 were En Route Center Controllers
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Controllers 
projected less 
accurately in the 
mixed speed profile 
scenarios (closing 
case:  t=2.021, 
p<.05, equal case:  
t= 1.279, p<.15) 
When both aircraft 
decelerated at the 
same rate, 
projection accuracy 
equaled the 
accuracy when 
both aircraft 
proceeded at 
constant speed

Accuracy of Projection 3

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Relative speeds of aircraft

D
iff

er
en

ce
 in

 P
re

di
ct

ed
 a

nd
 A

ct
ua

l 
Se

pa
ra

tio
n 

(n
m

)

Closing case                           Equal                        Opening Case

Constant/Decelerating

Both Constant Speed

Both Decelerating



MIT  MIT  
ICAT  ICAT  Subjective Responses

Difficulty of constant speed vs. deceleration
6 of 8 said that decelerating was more difficult
One mentioned that the mixed profile opening 
case was the most difficult

Strategy during the task:
Heuristic: 6 of 8 mentioned sampling the 
separation at two points then estimating 
separation based on the difference between the 
two samples
2 mentioned missing the speed vector on the 
radar display
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Accuracy:  Controllers were more accurate in 
projecting both constant or both decelerating 
aircraft than in projecting mixed profile aircraft
A simple mental calculation based on 
separation sampling could be established for 
the constant  & both decelerating case 
because the relative separation change over 
time was either constant or appeared linear
Mixed profile scenarios:  Possibility that no 
simple mental calculation could be 
established because the relative separation 
change was nonlinear
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The controllers’
task in this 
experiment was 
to project relative 
separation 
between the two 
aircraft
Relative 
separation in the 
Mixed Profile 
case was an 
observable 
nonlinear 
function, making 
the projection 
task more 
difficult  
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Controllers’ acceptance & ability to project future 
behavior of aircraft on approach are a barrier to 
implementing low noise procedures
Key differences between procedures affect cognitive 
processes:

Loss of simple dynamic abstractions More complex dynamics to 
project & higher workload
Loss of controllability Longer projection time required
Impact on workload due to changed tasks & projection requirements

ATC support is required, possibly in the form of:
Reduction of projection requirement

• E.g., Improving ATC speed controllability in RNAV CDA procedure-
speed commands and/or speedbrakes control

Supporting the formation of new projection abstractions
• E.g., Increasing predictability of dynamics- structured deceleration 

profiles
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